A130235 Partial sums of the 'lower' Fibonacci Inverse A130233.
0, 2, 5, 9, 13, 18, 23, 28, 34, 40, 46, 52, 58, 65, 72, 79, 86, 93, 100, 107, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 344, 353, 362, 371, 380, 389, 398, 407, 417, 427
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
m:=120; f:= func< x | (&+[x^Fibonacci(j): j in [1..Floor(3*Log(3*m+1))]])/(1-x)^2 >; R
:=PowerSeriesRing(Rationals(), m+1); [0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 17 2023 -
Mathematica
nmax = 90; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 1, 1 + Log[3/2 + Sqrt[5]*nmax]/Log[GoldenRatio]}]/(1-x)^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 14 2020 *)
-
SageMath
m=120 def f(x): return sum( x^fibonacci(j) for j in range(1, int(3*log(3*m+1))))/(1-x)^2 def A130235_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(x) ).list() A130235_list(m) # G. C. Greubel, Mar 17 2023
Formula
G.f.: 1/(1-x)^2 * Sum_{k>=1} x^Fib(k). [corrected by Joerg Arndt, Apr 14 2020]