A130237 The 'lower' Fibonacci Inverse A130233(n) multiplied by n.
0, 2, 6, 12, 16, 25, 30, 35, 48, 54, 60, 66, 72, 91, 98, 105, 112, 119, 126, 133, 140, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 450, 459, 468, 477, 486, 550
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
[n*Floor(Log(3/2 +n*Sqrt(5))/Log((1+Sqrt(5))/2)): n in [0..70]]; // G. C. Greubel, Mar 18 2023
-
Mathematica
Table[n*Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
-
SageMath
[n*int(log(3/2 +n*sqrt(5), golden_ratio)) for n in range(71)] # G. C. Greubel, Mar 18 2023
Formula
a(n) = n*A130233(n).
a(n) = n*floor(arcsinh(sqrt(5)*n/2)/log(phi)).
G.f.: (1/(1-x))*Sum_{k>=1} (Fib(k) + x/(1-x))*x^Fib(k).