A130239 Maximal index k of the square of a Fibonacci number such that Fib(k)^2 <= n (the 'lower' squared Fibonacci Inverse).
0, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0
Keywords
Examples
a(10) = 4 since Fib(4)^2 = 9 <= 10 but Fib(5)^2 = 25 > 10.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
A130233:= func< n | Floor(Log(3/2 + n*Sqrt(5))/Log((1+Sqrt(5))/2)) >; [A130233(Floor(Sqrt(n))): n in [0..120]]; // G. C. Greubel, Mar 18 2023
-
Mathematica
A130233[n_]:= Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]]; Table[A130233[Floor[Sqrt[n]]], {n, 0, 120}] (* G. C. Greubel, Mar 18 2023 *)
-
SageMath
def A130233(n): return int(log(3/2 +n*sqrt(5), golden_ratio)) def A130239(n): return A130233(floor(sqrt(n))) [A130239(n) for n in range(121)] # G. C. Greubel, Mar 18 2023
Formula
a(n) = max(k | Fib(k)^2 <= n) = A130233(floor(sqrt(n))).
a(n) = floor(arcsinh(sqrt(5n)/2)/log(phi)), where phi=(1+sqrt(5))/2.
G.f.: (1/(1-x))*Sum_{k>=1} x^(Fib(k)^2).