cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130242 Minimal index k of a Lucas number such that Lucas(k)>=n (the 'upper' Lucas (A000032) Inverse).

Original entry on oeis.org

0, 0, 0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Inverse of the Lucas sequence (A000032), nearly, since a(Lucas(n))=n except for n=1 (see A130241 and A130247 for other versions). For n>=2, a(n+1) is equal to the partial sum of the Lucas indicator sequence (see A102460).

Examples

			a(10)=5, since Lucas(5)=11>=10 but Lucas(4)=7<10.
		

Crossrefs

For partial sums see A130244.
Other related sequences: A000032, A130241, A130245, A130247, A130250, A130256, A130260.
Indicator sequence A102460.
Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Mathematica
    Join[{0, 0, 0}, Table[Ceiling[Log[GoldenRatio, n + 1/2]], {n, 2, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • Python
    from itertools import islice, count
    def A130242_gen(): # generator of terms
        yield from (0,0,0,2)
        a, b = 3, 4
        for i in count(3):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130242_list = list(islice(A130242_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = ceiling(log_phi((n+sqrt(n^2-4))/2))=ceiling(arccosh(n/2)/log(phi)) where phi=(1+sqrt(5))/2.
a(n) = A130241(n-1) + 1 = A130245(n-1) for n>=3.
G.f.: x/(1-x)*(2x^2+sum{k>=2, x^Lucas(k)}).
a(n) = ceiling(log_phi(n-1/2)) for n>=3, where phi is the golden ratio.