A130250 Minimal index k of a Jacobsthal number such that A001045(k) >= n (the 'upper' Jacobsthal inverse).
0, 1, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0
Keywords
Examples
a(10)=5 because A001045(5) = 11 >= 10, but A001045(4) = 5 < 10.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Programs
-
Magma
[0] cat [Ceiling(Log(2,3*n-1)): n in [1..120]]; // G. C. Greubel, Mar 18 2023
-
Mathematica
Table[If[n==0, 0, Ceiling[Log[2, 3*n-1]]], {n,0,120}] (* G. C. Greubel, Mar 18 2023 *)
-
Python
def A130250(n): return (3*n-2).bit_length() if n else 0 # Chai Wah Wu, Apr 17 2025
-
SageMath
def A130250(n): return 0 if (n==0) else ceil(log(3*n-1, 2)) [A130250(n) for n in range(121)] # G. C. Greubel, Mar 18 2023
Comments