A130252 Partial sums of A130250.
0, 1, 4, 7, 11, 15, 20, 25, 30, 35, 40, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 267, 275, 283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 371
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
A001045:= func< n | (2^n - (-1)^n)/3 >; A130252:= func< n | n eq 0 select 0 else (2*n*Ceiling(Log(2, 3*n-1)) - A001045(Ceiling(Log(2,3*n-1)) +1) +1)/2 >; [A130252(n): n in [0..70]]; // G. C. Greubel, Mar 18 2023
-
Mathematica
A001045[n_]:= (2^n - (-1)^n)/3; A130252[n_]:= If[n==0, 0, (2*n*Ceiling[Log[2,3*n-1]] - A001045[Ceiling[Log[2,3*n-1]]+1] +1)/2]; Table[A130252[n], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
-
Python
def A130252(n): return n*(m:=(3*n-1).bit_length())-(((1<
>1) # Chai Wah Wu, Apr 17 2025 -
SageMath
def A001045(n): return (2^n - (-1)^n)/3 def A130252(n): return 0 if (n==0) else (2*n*ceil(log(3*n-1,2)) - A001045(ceil(log(3*n-1,2)) +1) +1)/2 [A130252(n) for n in range(71)] # G. C. Greubel, Mar 18 2023
Comments