A130255 Maximal index k of an odd Fibonacci number (A001519) such that A001519(k) = Fibonacci(2k-1) <= n (the 'lower' odd Fibonacci Inverse).
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
Keywords
Examples
a(10)=3 because A001519(3) = 5 <= 10, but A001519(4) = 13 > 10.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
phi:=(1+Sqrt(5))/2; [Floor((1 +Argsinh(Sqrt(5)*n/2)/Log(phi))/2): n in [1..100]]; // G. C. Greubel, Sep 09 2018
-
Mathematica
Table[Floor[(1 +ArcSinh[Sqrt[5]*n/2]/Log[GoldenRatio])/2], {n, 1, 100}] (* G. C. Greubel, Sep 09 2018 *)
-
PARI
phi=(1+sqrt(5))/2; vector(100, n, floor((1 +asinh(sqrt(5)*n/2)/log(phi))/2)) \\ G. C. Greubel, Sep 09 2018
Formula
a(n) = floor((1 + arcsinh(sqrt(5)*n/2)/log(phi))/2).
a(n) = floor((1 + arccosh(sqrt(5)*n/2)/log(phi))/2).
a(n) = floor((1 + log_phi(sqrt(5)*n))/2) for n >= 1, where phi = (1 + sqrt(5))/2.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^Fibonacci(2k-1).
a(n) = floor((1/2)*(1 + log_phi(sqrt(5)*n + 1))) for n >= 1.
Comments