A130256 Minimal index k of an odd Fibonacci number A001519 such that A001519(k) = Fibonacci(2*k-1) >= n (the 'upper' odd Fibonacci Inverse).
0, 0, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0
Keywords
Examples
a(10)=4 because A001519(4) = 13 >= 10, but A001519(3) = 5 < 10.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
[0,0] cat [Ceiling((1/2)*(1 + Log(Sqrt(5)*n-1)/(Log((1+Sqrt(5))/2)))): n in [2..100]]; // G. C. Greubel, Sep 12 2018
-
Mathematica
Join[{0, 0}, Table[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*n - 1)])], {n, 2, 100}]] (* G. C. Greubel, Sep 12 2018 *)
-
PARI
for(n=0,100, print1(if(n==0, 0, if(n==1, 0, ceil((1/2)*(1 + log(sqrt(5)*n-1)/(log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 12 2018
Formula
a(n) = ceiling((1+arccosh(sqrt(5)*n/2)/log(phi))/2), where phi=(1+sqrt(5))/2.
G.f.: (x/(1-x))*Sum_{k>=0} x^Fibonacci(2*k-1).
a(n) = ceiling((1/2)*(1+log_phi(sqrt(5)*n-1))) for n >= 2, where phi=(1+sqrt(5))/2.
Comments