A130258 Partial sums of the 'upper' odd Fibonacci Inverse A130256.
0, 0, 2, 5, 8, 11, 15, 19, 23, 27, 31, 35, 39, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
Crossrefs
Programs
-
Magma
[0,0] cat [(&+[Ceiling((1/2)*(1 + Log(Sqrt(5)*k-1)/Log((1+Sqrt(5))/2))): k in [2..n]]): n in [2..50]]; // G. C. Greubel, Sep 13 2018
-
Mathematica
Table[Sum[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*k - 1)])], {k,2,n}], {n, 0, 50}] (* G. C. Greubel, Sep 13 2018 *)
-
PARI
for(n=0, 50, print1(if(n==0, 0, if(n==1, 0, sum(k=2, n, ceil( (1/2)*(1 + log(sqrt(5)*k - 1)/log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 13 2018