cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130260 Minimal index k of an even Fibonacci number A001906 such that A001906(k) = Fib(2k) >= n (the 'upper' even Fibonacci Inverse).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Hieronymus Fischer, May 25 2007, May 28 2007, Jul 02 2007

Keywords

Comments

Inverse of the even Fibonacci sequence (A001906), since a(A001906(n))=n (see A130259 for another version).
a(n+1) is the number of even Fibonacci numbers (A001906) <=n.

Examples

			a(10)=4 because A001906(4)=21>=10, but A001906(3)=8<10.
		

Crossrefs

Cf. partial sums A130262. Other related sequences: A000045, A001519, A130234, A130237, A130239, A130256, A130259. Lucas inverse: A130241 - A130248.

Programs

  • Magma
    [0] cat [Ceiling(Log(Sqrt(5)*n)/(2*Log((1+ Sqrt(5))/2))): n in [1..100]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Join[{0}, Table[Ceiling[Log[GoldenRatio, Sqrt[5]*n]/2], {n, 1, 100}]] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0,100, print1(if(n==0, 0, ceil(log(sqrt(5)*n)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = ceiling(arcsinh(sqrt(5)*n/2)/(2*log(phi))) for n>=0.
a(n) = ceiling(arccosh(sqrt(5)*n/2)/(2*log(phi))) for n>=1.
a(n) = ceiling(log_phi(sqrt(5)*n)/2)=ceiling(log_phi(sqrt(5)*n-1)/2) for n>=1, where phi=(1+sqrt(5))/2.
a(n) = A130259(n-1) + 1, for n>=1.
G.f.: g(x)=x/(1-x)*Sum_{k>=0} x^Fib(2*k).