A130261 Partial sums of the 'lower' even Fibonacci Inverse A130259.
0, 1, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 192, 197, 202, 207, 212, 217
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
[(&+[Floor(Log((Sqrt(5)*k+1))/(2*Log((1+Sqrt(5))/2))): k in [0..n]]): n in [0..50]]; // G. C. Greubel, Sep 12 2018
-
Mathematica
Table[Sum[Floor[1/2*Log[GoldenRatio, (Sqrt[5]*k + 1)]], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Sep 12 2018 *)
-
PARI
for(n=0,50, print1(sum(k=0,n, floor(log((sqrt(5)*k+1))/(2*log((1 +sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018