A130265 Triangle read by rows: matrix product A007318 * A051340.
1, 2, 2, 4, 5, 3, 8, 10, 10, 4, 16, 19, 23, 17, 5, 32, 36, 46, 46, 26, 6, 64, 69, 87, 102, 82, 37, 7, 128, 134, 162, 204, 204, 134, 50, 8, 256, 263, 303, 387, 443, 373, 205, 65, 9, 512, 520, 574, 718, 886, 886, 634, 298, 82, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 2; 4, 5, 3; 8, 10, 10, 4; 16, 19, 23, 17, 5; 32, 36, 46, 46, 26, 6; 64, 69, 87, 102, 82, 37, 7;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A130265:= func< n,k | k eq n select n+1 else (k+1)*Binomial(n,k) + (&+[Binomial(n, j+k): j in [1..n-k]]) >; [A130265(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2023
-
Maple
A051340 := proc(n,k) if k = n then n+1 ; elif k <= n then 1; else 0; end if; end proc: A130265 := proc(n,k) add( binomial(n,j)*A051340(j,k),j=k..n) ; end proc: seq(seq(A130265(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 06 2016
-
Mathematica
T[n_, k_]:= (k+1)*Binomial[n,k] + Binomial[n,k+1]*Hypergeometric2F1[1, k-n+1, k+2, -1]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2023 *)
-
SageMath
def A130265(n,k): return (k+1)*binomial(n,k) + sum(binomial(n, j+k) for j in range(1,n-k+1)) flatten([[A130265(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 18 2023
Formula
Binomial transform of A051340.
From G. C. Greubel, Mar 18 2023: (Start)
T(n, k) = (k+1)*binomial(n,k) + Sum_{j=1..n-k} binomial(n, j+k).
T(n, k) = (k+1)*binomial(n,k) + binomial(n,k+1)*Hypergeometric2F1([1, k-n+1], [k+2], -1).
T(2*n, n) = (1/2)*T(2*n+1, n) = A258431(n+1).
Sum_{k=0..n} T(n, k) = A001787(n+1).
Sum_{k=0..n-1} T(n, k) = A058877(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A084633(n). (End)
Extensions
Missing term inserted by R. J. Mathar, Aug 06 2016