A130282 Numbers n such that A130280(n^2-1) < n-1, i.e., there is a k, 1 < k < n-1, such that (n^2-1)(k^2-1)+1 is a perfect square.
11, 23, 39, 41, 59, 64, 83, 111, 134, 143, 153, 179, 181, 219, 263, 307, 311, 363, 373, 386, 419, 479, 543, 571, 584, 611, 683, 703, 759, 781, 839, 900, 923, 989, 1011, 1103, 1156, 1199, 1299, 1403, 1405, 1425, 1511, 1546, 1623, 1739, 1769, 1859, 1983, 2111
Offset: 1
Examples
a(1) = 11 since n=11 is the smallest integer > 1 such that (n^2-1)(k^2-1)+1 is a square for 1 < k < n-1, namely for k=2. Values of P[2](k+1) = 2 k^2 + 2 k - 1 for k=2,3,... are { 11,23,39,... } and A130280(11^2-1)=2, A130280(23^2-1)=3, A130280(39^2-1)=4,... Values of P[3](k) = 4 k^3 - 4 k^2 - 3 k + 1 for k=2,3,4... are { 11,64,181,... } and A130280(64^2-1)=3, A130280(181^2-1)=4,... Values of -P[3](-k) = 4 k^3 + 4 k^2 - 3 k - 1 for k=2,3,4... are { 41,134,307,... } and A130280(134^2-1)=3, A130280(307^2-1)=4,...
Links
- Michael Usher, Infinite staircases in the symplectic embedding problem for four-dimensional ellipsoids into polydisks, arXiv:1801.06762 [math.SG], 2018.
Programs
-
PARI
check(n) = { local( m = n^2-1 ); for( i=2, n-2, if( issquare( m*(i^2-1)+1), return(i))) } t=0;A130282=vector(100,i,until(check(t++),);t)
-
PARI
P(m,x=x)=if(m>1,2*x*P(m-1,x)-P(m-2,x),m*(x-2)+1)
Formula
If 2n+3 is a square, then n = b(k)= 2k(k+1)-1, k = (sqrt(n/2+3/4)-1)/2 = floor(sqrt(n/2)) >= A130280(n^2-1). (For all k>1, b(k) is in this sequence.)
Most terms of this sequence are in the set { P[m](k), |P[m](-k)| ; m=2,3,4..., k=2,3,4,... } with P[m] = 2 X P[m-1] - P[m-2], P[1]=X-1, P[0]=1. Whenever a(n) = P[m](k) or a(n) = |P[m](-k)| (m,k>1), then A130280(a(n)^2-1) <= k (resp. k-1 for m=2) < a(n). (No case where equality does not hold is known so far.) We have P[2] = P[2](1-X) and for all integers m>2,x>0: P[m](x) < (-1)^m P[m](-x) <= |P[m+1](x)| with equality iff x=2. We have P[m](-1)=(-1)^m (m+1), P[m](0)=(-1)^(m(m+1)/2), P[m](1)=1-m, P[m](x)>0 for all x >=2 ; P[m](x) ~ 2^(m-1) x^m.
Comments