A130280 a(n) = smallest integer k>1 such that n(k^2-1)+1 is a perfect square, or 0 if no such number exists.
2, 5, 3, 0, 2, 3, 5, 2, 0, 3, 7, 5, 4, 11, 3, 2, 4, 13, 9, 7, 2, 5, 19, 4, 0, 5, 21, 3, 11, 9, 11, 14, 2, 29, 5, 3, 6, 31, 21, 2, 13, 11, 13, 169, 3, 7, 41, 6, 0, 7, 5, 11, 22, 419, 3, 2, 5, 23, 461, 27, 8, 55, 7, 4, 2, 3, 49, 29
Offset: 1
Examples
a( (2k)^2 ) <= k since (2k)^2(k^2-1)+1 = (2k^2-1)^2 (but k=1 is excluded since with k^2-1=0 this would be a trivial solution for any n).
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A130280:=proc(n) local x,y,z; if n=1 then return 2 fi; isolve(n*(x^2-1)+1=y^2,z); select(has,`union`(%),x); map(rhs,%); simplify(eval(%,z=1) union eval(%,z=0)) minus {-1,1}; if %={} then 0 else (min@op@map)(abs,%) fi end;
-
Mathematica
$MaxExtraPrecision = 100; r[n_, c_] := Reduce[k > 1 && j > 1 && n*(k^2 - 1) + 1 == j^2, {j, k}, Integers] /. C[1] -> c // Simplify; a[n_] := If[rn = r[n,0] || r[n,1] || r[n,2]; rn === False, 0, k /. {ToRules[rn]} // Min]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 800}] (* Jean-François Alcover, May 12 2017 *)
-
PARI
{A130280(n,L=10^15)=if(issquare(n),L=2+sqrtint(n>>2)); for( k=2, L, if( issquare(n*(k^2-1)+1),return(k)))}
Comments