A082732
a(1) = 1, a(2) = 3, a(n) = LCM of all the previous terms + 1.
Original entry on oeis.org
1, 3, 4, 13, 157, 24493, 599882557, 359859081592975693, 129498558604939936868397356895854557, 16769876680757063368089314196389622249367851612542961252860614401811693
Offset: 1
Cf.
A000058,
A004168,
A144743,
A144779,
A144780,
A144781,
A144782,
A144783,
A144784,
A144785,
A144786,
A144787,
A144788.
-
a[1] = 1; a[2] = 3; a[n_] := Apply[LCM, Table[a[i], {i, 1, n - 1}]] + 1; Table[ a[n], {n, 1, 10}]
c=1.8806785436830780944921917650127503562630617563236301969047995953391479871\
7695395204087358090874194124503892563356447954254847544689332763; Table[c^(2^n),{n,1,6}] or a = {}; k = 4; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a (* Artur Jasinski, Sep 22 2008 *)
A144744
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=4.
Original entry on oeis.org
4, 11, 109, 11771, 138544669, 19194625169774891, 368433635408155743950638444286989, 135743343700069833946317076518699443524748244656296738254150399131
Offset: 0
-
a = {}; k = 4; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
-
a(n, s=4)={for(i=1, n, s=s^2-s-1); s} \\ M. F. Hasler, Oct 06 2014
A144745
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=9.
Original entry on oeis.org
9, 71, 4969, 24685991, 609398126966089, 371366077149776919833628989831, 137912763257614063309949706968500684963726537144819872418729
Offset: 0
-
k = 9; a = {k}; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
NestList[#^2 - # - 1 &, 9, 7] (* Harvey P. Dale, Feb 04 2011 *)
-
a(n,s=9)=for(i=1,n,s=s^2-s-1);s \\ M. F. Hasler, Oct 06 2014
A144746
a(n) = a(n-1)^2 - a(n-1) - 1, a(0)=6.
Original entry on oeis.org
6, 29, 811, 656909, 431528777371, 186217085698878552894269, 34676803006183479266409218250231853558140150091, 1202480666729655584789949373132702064208272454072740050128160074167965751208292536045867158189
Offset: 0
A144747
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=7.
Original entry on oeis.org
7, 41, 1639, 2684681, 7207509387079, 51948191564824694742765161, 2698614606855723567054656642857156538246857652590759, 7282520796335071470236496456671241855257664867148949932302276253455702665493855273950765616767079605321
Offset: 0
-
a = {}; k = 7; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
-
a(n, s=7)={for(i=1, n, s=s^2-s-1);s} \\ M. F. Hasler, Oct 06 2014
A144748
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=8.
Original entry on oeis.org
8, 55, 2969, 8811991, 77651176572089, 6029705223029665929437251831, 36357345076631233348346773693633697407708655232275600729, 1321856541021241383115043586121503961331042183698683965174269952435581223368633124721267107619465028785549730711
Offset: 0
-
a = {}; k = 8; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
NestList[#^2-#-1&,8,10] (* Harvey P. Dale, Mar 14 2016 *)
-
a(n, s=8)={for(i=1, n, s=s^2-s-1); s} \\ M. F. Hasler, Oct 06 2014
Showing 1-6 of 6 results.
Comments