A144743
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=3.
Original entry on oeis.org
3, 5, 19, 341, 115939, 13441735781, 180680260792773944179, 32645356640144805339284259388335434039861, 1065719310162246533488642668727242229836148490441005113524301742665845135502859459
Offset: 0
-
a = {3}; k = 3; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
-
a(n,s=3)=for(i=1,n,s=s^2-s-1);s \\ M. F. Hasler, Oct 06 2014
A144744
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=4.
Original entry on oeis.org
4, 11, 109, 11771, 138544669, 19194625169774891, 368433635408155743950638444286989, 135743343700069833946317076518699443524748244656296738254150399131
Offset: 0
-
a = {}; k = 4; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
-
a(n, s=4)={for(i=1, n, s=s^2-s-1); s} \\ M. F. Hasler, Oct 06 2014
A144746
a(n) = a(n-1)^2 - a(n-1) - 1, a(0)=6.
Original entry on oeis.org
6, 29, 811, 656909, 431528777371, 186217085698878552894269, 34676803006183479266409218250231853558140150091, 1202480666729655584789949373132702064208272454072740050128160074167965751208292536045867158189
Offset: 0
A144747
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=7.
Original entry on oeis.org
7, 41, 1639, 2684681, 7207509387079, 51948191564824694742765161, 2698614606855723567054656642857156538246857652590759, 7282520796335071470236496456671241855257664867148949932302276253455702665493855273950765616767079605321
Offset: 0
-
a = {}; k = 7; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
-
a(n, s=7)={for(i=1, n, s=s^2-s-1);s} \\ M. F. Hasler, Oct 06 2014
A144748
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=8.
Original entry on oeis.org
8, 55, 2969, 8811991, 77651176572089, 6029705223029665929437251831, 36357345076631233348346773693633697407708655232275600729, 1321856541021241383115043586121503961331042183698683965174269952435581223368633124721267107619465028785549730711
Offset: 0
-
a = {}; k = 8; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
NestList[#^2-#-1&,8,10] (* Harvey P. Dale, Mar 14 2016 *)
-
a(n, s=8)={for(i=1, n, s=s^2-s-1); s} \\ M. F. Hasler, Oct 06 2014
Showing 1-5 of 5 results.
Comments