cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130283 Integers n > 0 for which A130280(n) = 0, i.e., such that there is no integer m > 1 for which n(m^2 - 1) + 1 is a square.

Original entry on oeis.org

4, 9, 25, 49, 81, 121, 169, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409
Offset: 1

Views

Author

M. F. Hasler, May 24 2007

Keywords

Comments

No term > 4 in this sequence is an even square (see formula in A130280).
A001248(k) is a term for any k. - Jinyuan Wang, Apr 14 2019

Examples

			a(1)=4 since 1(2^2-1)+1=2^2, 2(5^2-1)+1=7^2, 3(3^2-1)+1=5^2 but 4(m^2-1)+1 = 4m^2-3 can't be a square because the largest square < 4m^2 is (2m-1)^2 = 4m^2-4m+1 < 4m^2-3 for m>1.
a(2)=9 since for n=5,6,7,8 one has m=2,3,5,2, but 9(m^2-1)+1 = 9m^2-8 > 9m^2-11 >= 9m^2-6m+1 = (3m-1)^2 and therefore can't be a square.
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 200;
    r[n_, c_] := Reduce[k > 1 && j > 1 && n*(k^2 - 1) + 1 == j^2, {j, k}, Integers] /. C[1] -> c // Simplify;
    A130280[n_] := If[rn = r[n, 0] || r[n, 1] || r[n, 2]; rn === False, 0, k /. {ToRules[rn]} // Min];
    Reap[For[n=1, n <= 2000, n++, If[A130280[n]==0, Print[n]; Sow[n]]]][[2,1]] (* Jean-François Alcover, May 12 2017 *)
  • PARI
    f(n) = for(k=2, n+1, if( issquare(n*(k^2-1)+1), return(k)))
    is(n) = issquare(n) && f(n) == 0; \\ Jinyuan Wang, Apr 14 2019

Extensions

More terms from Jean-François Alcover, May 12 2017
More terms from Jinyuan Wang, Apr 14 2019

A130284 Integers j > 0 such that (2j+1)^2(m^2-1) + 1 is a square for some integer m > 1.

Original entry on oeis.org

7, 17, 31, 49, 71, 97, 104, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 594, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1455, 1457, 1567, 1681, 1799, 1921, 1952, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049
Offset: 1

Views

Author

M. F. Hasler, May 24 2007, May 29 2007

Keywords

Comments

All terms > 4 in A130283 are odd squares, but not all odd squares are in that sequence: This sequence here gives the exceptions as (2a(n)+1)^2. The sequence consists mainly of the subsequences: (1) A056220(k) = 2k^2-1 with k>1: {7,17,31,49,...}, for which m=k gives (1+2*A056220(k))^2(k^2-1)+1 = k^2(4k^2-3)^2; (2) 2*A079414(k) = 2k^2(4k^2-3) with k>1: {104,594,1952,4850,...}, for which m=k gives (1+4*A079414(k))^2(k^2-1)+1 = k^2(16k^4-20k^2+5)^2. A third subsequence starts {1455,20195,...}; up to 20195, all terms are in one of these subsequences.

Examples

			Up to k=17, a(k)=P[1](k+1) with P[1] = 2x^2 - 1, A130280(a(k)) = k+1.
a(18) = P[2](2) < P[1](19) with P[2] = 2x^2*(4x^2 - 3), A130280(a(18)) = 2.
a(106) = P[1](100) < a(107) = P[3](3) < a(108) = P[4](2) < a(109) = P[1](101).
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Reduce[m>1 && k>1 && (2n+1)^2*(m^2-1)+1 == k^2, {m, k}, Integers];
    Reap[For[n=1, n <= 5000, n++, If[r[n] =!= False, Print[n]; Sow[n]]]][[2,1]] (* Jean-François Alcover, May 12 2017 *)
  • PARI
    A130284( LIM=9999, START=1 )={ local(N); for( n=START, LIM, N=(2*n+1)^2; for( m=2, sqrtint(n>>1+1), if(!issquare( N*(m^2-1)+1 ), next); print1(n", "); next(2))) }
    
  • PARI
    {Q(k,x=x)=if(m>0,(4*x^2-2)*Q(k-1,x)-Q(k-2,x),1)} {P(k,x=x)=if(type(x=(x^2*Q(k,x)^2-1)/(x^2-1))!="t_POL",sqrtint(x)\2,((-1)^k*Pol(sqrt(x))-1)/2)}

Formula

A130284 = { P[k](m) ; k=1,2,3,..., m=2,3,4,... } where P[k] = (sqrt((X^2 Q[k]^2 - 1)/(X^2 - 1))-1)/2 and Q[0] = Q[-1] = 1, Q[k+1] = (4X^2 -2)*Q[k] - Q[k-1]. Furthermore, (2P[k](m)+1)^2 (m^2 - 1)+1 = m^2 Q[k](m)^2, thus A130280(P[k](m)) <= m. So far, no case is known where we have strict inequality.

A130289 Record values in A130280: minima of { m>1 | (2n+1)^2(m^2-1)+1 is a square} bigger than for all preceding n.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 21, 29, 31, 169, 419, 461, 3269, 7127, 3877019, 22783559, 215308729
Offset: 1

Views

Author

M. F. Hasler, May 24 2007

Keywords

Comments

Most elements of this sequence seem to be 1,2 or 4 times a prime.

Crossrefs

Programs

  • PARI
    A130289( L=999, S=1 )={ local( R, T ); for( n=S, L, if( issquare(n) || R >= T = A130280(n), next ); print1( T ", " ); R=T )}
Showing 1-3 of 3 results.