cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130336 Record values in A130335.

Original entry on oeis.org

1, 2, 7, 10, 13, 22, 31, 37, 58, 79, 82, 94, 109, 118, 157, 178, 193, 214
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ GCD[n(n + 1)/2, (n + k)(n + k + 1)/2] != 1, k++ ]; k]; t = Table[0, {1000}]; Do[a = f@n; If[a < 1001 && t[[a]] == 0, t[[a]] = n; Print[{a, n}], If[a > 1000, Print[{"Over 1000", n}]]], {n, 2^31 - 1}] (* Robert G. Wilson v, Jun 03 2007 *)

Formula

a(n) = A130335(A130337(n)).
A130335(k) < a(n) for k < A130337(n).

Extensions

a(13)-a(16) from Robert G. Wilson v, Jun 03 2007
Added a(17) and corrected a(12) by Chai Wah Wu, Sep 16 2021
a(18) from Chai Wah Wu, Sep 23 2021

A130337 Where record values occur in A130335.

Original entry on oeis.org

1, 2, 3, 12, 24, 84, 195, 780, 924, 29259, 71484, 2311539, 23303784, 208260975, 319589424, 383229924, 11962377504, 178523171904
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ GCD[n(n + 1)/2, (n + k)(n + k + 1)/2] != 1, k++ ]; k]; t = Table[0, {1000}]; Do[a = f@n; If[a < 1001 && t[[a]] == 0, t[[a]] = n; Print[{a, n}], If[a > 1000, Print[{"Over 1000", n}]]], {n, 2^31 - 1}] (* Robert G. Wilson v, Jun 03 2007 *)

Formula

A130336(n) = A130335(a(n)).
A130335(k) < A130336(n) for k

Extensions

a(13)-a(16) from Robert G. Wilson v, Jun 03 2007
a(17) from Chai Wah Wu, Sep 16 2021
a(18) from Chai Wah Wu, Sep 23 2021

A130334 Smallest m>n such that the m-th and n-th triangular numbers are coprime.

Original entry on oeis.org

2, 4, 10, 6, 7, 10, 9, 10, 13, 12, 13, 22, 15, 16, 22, 18, 19, 22, 21, 22, 25, 24, 25, 37, 27, 28, 37, 30, 31, 37, 33, 34, 37, 36, 37, 46, 39, 40, 46, 42, 43, 46, 45, 46, 52, 48, 49, 58, 51, 52, 58, 54, 55, 58, 57, 58, 61, 60, 61, 73, 63, 64, 73, 66, 67, 70, 69, 70, 73, 72, 73
Offset: 1

Author

Reinhard Zumkeller, May 28 2007

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A130334(n):
        k, Tn, Tm = n+1, n*(n+1)//2, (n+1)*(n+2)//2
        while gcd(Tn,Tm) != 1:
            k += 1
            Tm += k
        return k # Chai Wah Wu, Sep 16 2021

Formula

a(n) > n+1 for n>1; a(n) > n+2 for n with n mod 3 = 0;
a(n) = n + A130335(n).
Showing 1-3 of 3 results.