cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130338 Primes p with no solution x to x=p*digitsum(x).

Original entry on oeis.org

173, 383, 431, 443, 461, 491, 521, 563, 761, 821, 827, 839, 941, 971, 983, 1049, 1481, 1487, 1493, 1499, 1553, 1571, 1601, 1811, 1871, 1931, 2153, 2207, 2477, 2591, 2609, 2753, 3037, 3041, 3083, 3137, 3221, 3251, 3257, 3307, 3329, 3371
Offset: 1

Views

Author

Lekraj Beedassy, Aug 07 2007

Keywords

Comments

Primes p such that no number is p times its digit sum.
These may be called the non-Moran primes because no index k exists in A001101 to represent them as A001101(k)/digitsum[A001101(k)]. - R. J. Mathar, Aug 10 2007

Examples

			p=5743 is not in the sequence because it can be represented as p=40201/7 (x=40201) or as p=80402/14 (x=80402).
p=7 is not in the sequence because it can be represented as p=21/3 (x=21) or p=42/6 (x=42) or p=63/9 (x=63) or p=84/12 (x=84). In all cases, the denominators are the digit sums of the numerators.
		

Crossrefs

Programs

  • Maple
    A007953 := proc(n) option remember ; add(j,j=convert(n,base,10)) ; end: A001101 := proc(p) option remember : local k,digs ; digs := 1; if not isprime(p) then RETURN(-1) ; else while 10^(digs-1)/(9*digs) <= p do for k from max(p,10^(digs-1)) to 10^digs do if k = p*A007953(k) then RETURN(k) ; fi ; od ; digs := digs+1 ; od: RETURN(-1) ; fi ; end: for n from 1 to 500 do if A001101(ithprime(n)) = -1 then printf("%d,",ithprime(n)) ; fi : od: # R. J. Mathar, Aug 10 2007
  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy import nextprime
    def A130338_gen(startvalue=1): # generator of terms >= startvalue
        n = nextprime(max(startvalue,1)-1)
        while True:
            for l in count(1):
                if 9*l*n < 10**(l-1):
                    yield n
                    break
                for d in combinations_with_replacement(range(10),l):
                    if (s:=sum(d))>0 and sorted(str(s*n)) == [str(e) for e in d]:
                        break
                else:
                    continue
                break
            n = nextprime(n)
    A130338_list = list(islice(A130338_gen(),20)) # Chai Wah Wu, May 09 2023

Formula

A000040 MINUS {A001101(k)/A007953(A001101(k)): k=1,2,3,4,..}. A003635 INTERSECT A000040. - R. J. Mathar, Aug 10 2007

Extensions

More terms from R. J. Mathar, Aug 10 2007