Original entry on oeis.org
1, 3, 13, 83, 814, 12502, 303102, 11681388, 718217460, 70660085940, 11145552305760, 2823029266531680, 1149529177121700960, 753213189796615454400, 794745942920930023732800
Offset: 0
a(n) = A003266(n+1)*[F(n+1) + F(n+2)*[1+ 1/2+ 2/3+ 3/5+...+ F(n)/F(n+1)]]:
a(3) = 1*1*2*3*( 3 + 5*(1/1 + 1/2 + 2/3) ) = 83;
a(4) = 1*1*2*3*5*( 5 + 8*(1/1 + 1/2 + 2/3 + 3/5) ) = 814;
a(5) = 1*1*2*3*5*8*( 8 + 13*(1/1 + 1/2 + 2/3 + 3/5 + 5/8) ) = 12502.
-
a(n)=polcoeff(prod(i=0,n+1,fibonacci(i+1)+x*fibonacci(i)),1)
-
/* Recurrence a(n) = F(n+2)*a(n-1) + F(n+1)*A003266(n+1): */ a(n)=if(n==0,1,fibonacci(n+2)*a(n-1)+fibonacci(n+1)*prod(i=1,n+1,fibonacci(i)))
-
a(n)=prod(i=1,n+1,fibonacci(i))*(fibonacci(n+1) + fibonacci(n+2)*sum(k=0,n,fibonacci(k)/fibonacci(k+1)))
Original entry on oeis.org
1, 3, 9, 37, 233, 2254, 34342, 827262, 31730508, 1943441460, 190609515540, 29988517246560, 7579307667005280, 3080578207713982560, 2015291663362285214400, 2123462159890867147060800
Offset: 0
a(n) = A003266(n)*[F(n+2) + F(n+1)*[1+ 2/1+ 3/2+ 5/3+...+ F(n+1)/F(n)]]:
a(3) = 1*1*2*( 5 + 3*(1/1 + 2/1 + 3/2) ) = 37;
a(4) = 1*1*2*3*( 8 + 5*(1/1 + 2/1 + 3/2 + 5/3) ) = 233;
a(5) = 1*1*2*3*5*( 13 + 8*(1/1 + 2/1 + 3/2 + 5/3 + 8/5) ) = 2254.
-
a(n)=polcoeff(prod(i=0,n+1,fibonacci(i+1)+x*fibonacci(i)),n)
-
/* Recurrence a(n) = F(n+1)*a(n-1) + F(n+2)*A003266(n): */ {a(n)=if(n==0,1,fibonacci(n+1)*a(n-1)+fibonacci(n+2)*prod(i=1,n,fibonacci(i)))}
-
a(n)=prod(i=1,n,fibonacci(i))*(fibonacci(n+2) + fibonacci(n+1)*sum(k=1,n,fibonacci(k+1)/fibonacci(k)) )
A153861
Triangle read by rows, binomial transform of triangle A153860.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 10, 5, 1, 5, 15, 20, 15, 6, 1, 6, 21, 35, 35, 21, 7, 1, 7, 28, 56, 70, 56, 28, 8, 1, 8, 36, 84, 126, 126, 84, 36, 9, 1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 3, 1;
3, 6, 4, 1;
4, 10, 10, 5, 1;
5, 15, 20, 15, 6, 1;
6, 21, 35, 35, 21, 7, 1;
7, 28, 56, 70, 56, 28, 8, 1;
8, 36, 84, 126, 126, 84, 36, 9, 1;
9, 45, 120, 210, 252, 210, 120, 45, 10, 1;
...
This is
A137396 without the initial column and without signs.
-
z = 10; c = 1; d = 1;
p[0, x_] := 1
p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193815 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A153861 *)
(* Clark Kimberling, Aug 06 2011 *)
Showing 1-3 of 3 results.
Comments