A130408 Numerators of a-sequence for Sheffer matrix A130191 (Stirling2 squared).
1, 1, -1, 3, -44, 49, -9895, 3124, -54429, 2624879, -59124785, 163841201, -2508904105349, 1776678914237, -2029995134495, 175211074573961, -21557683580436716, 94127808754677868, -87882971047931164843, 161354083950193175137, -104683178840085862057001
Offset: 0
Examples
Rationals r(n): [1, 1, -1/3, 3/4, -44/15, 49/3, -9895/84, 3124/3, -54429/5, ...]. Recurrence for (Stirling2)^2: 32=S2sq(4,2) = (4/2)*(1*1*5 + 2*1*6 + 3*(-1/3)*1).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- Wolfdieter Lang, Rationals and more.
Programs
-
Magma
m:=22; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x/Log(1+Log(1+x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Jan 26 2020 -
Maple
seq( numer( coeff(series( x/log(1+log(1+x)), x, n+2)*factorial(n), x, n) ), n = 0..20); # G. C. Greubel, Jan 26 2020
-
Mathematica
With[{m = 20}, CoefficientList[Series[x/Log[1+Log[1+x]], {x,0,m}], x]*Range[0, m]!]//Numerator (* G. C. Greubel, Jan 26 2020 *)
-
Sage
[numerator( factorial(n)*( x/log(1+log(1+x)) ).series(x,n+1).list()[n]) for n in (0..20)] # G. C. Greubel, Jan 26 2020
Formula
a(n) = numerator(r(n)), n >= 0, with the rational r(n) sequence with e.g.f. x/log(1+log(1+x)). {r(n)} is the a-sequence for the Sheffer matrix (Stirling2)^2 (A130191).
Comments