cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A130408 Numerators of a-sequence for Sheffer matrix A130191 (Stirling2 squared).

Original entry on oeis.org

1, 1, -1, 3, -44, 49, -9895, 3124, -54429, 2624879, -59124785, 163841201, -2508904105349, 1776678914237, -2029995134495, 175211074573961, -21557683580436716, 94127808754677868, -87882971047931164843, 161354083950193175137, -104683178840085862057001
Offset: 0

Views

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

The denominators are found in A130409.
From the definition of the a-sequence {r(n)} one has the recurrence for (Stirling2)^2 = S2sq: S2sq(n,m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j,j)*r(j)*S2sq(n-1,m-1+j), n >= m >= 1.
For the notion of the a-sequence for a Sheffer matrix see the W. Lang link under A006232. Here the a-sequence is called r(n) because it is a sequence of rationals.

Examples

			Rationals r(n): [1, 1, -1/3, 3/4, -44/15, 49/3, -9895/84, 3124/3, -54429/5, ...].
Recurrence for (Stirling2)^2: 32=S2sq(4,2) = (4/2)*(1*1*5 + 2*1*6 + 3*(-1/3)*1).
		

Crossrefs

Cf. A006232(n)/A006233(n) (a-sequence for Stirling2 A048993).

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x/Log(1+Log(1+x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Jan 26 2020
    
  • Maple
    seq( numer( coeff(series( x/log(1+log(1+x)), x, n+2)*factorial(n), x, n) ), n = 0..20); # G. C. Greubel, Jan 26 2020
  • Mathematica
    With[{m = 20}, CoefficientList[Series[x/Log[1+Log[1+x]], {x,0,m}], x]*Range[0, m]!]//Numerator (* G. C. Greubel, Jan 26 2020 *)
  • Sage
    [numerator( factorial(n)*( x/log(1+log(1+x)) ).series(x,n+1).list()[n]) for n in (0..20)] # G. C. Greubel, Jan 26 2020

Formula

a(n) = numerator(r(n)), n >= 0, with the rational r(n) sequence with e.g.f. x/log(1+log(1+x)). {r(n)} is the a-sequence for the Sheffer matrix (Stirling2)^2 (A130191).
Showing 1-1 of 1 results.