A130416 Numerator of partial sums for a series of (17/18)*Zeta(4) = (17/1680)*Pi^4.
1, 49, 6623, 741857, 13247611, 3060203141, 13645449045719, 218327192834879, 100212182125865461, 1904031462407822767, 2534265876944902342877, 58288115171766608401171, 128058989033214718801833487
Offset: 1
Examples
Rationals: 1, 49/48, 6623/6480, 741857/725760, 13247611/12960000, ...
References
- L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.
Links
- W. Lang, Rationals and limit.
- A. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report, Math. Intelligencer 1 (1978/79), no. 4, 195-203; reprinted in Pi: A Source Book, pp. 439-447, footnote 10, p. 446 (conjecture).
Formula
a(n) = numerator(r(n)), n >= 1, with the rationals defined above.
Comments