A130451 Number of divisors of A123193(n).
1, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 8, 3, 2, 8, 2, 2, 8, 2, 8, 2, 2, 3, 2, 8, 8, 2, 2, 8, 2, 8, 2, 2, 8, 2, 5, 2, 8, 2, 2, 2, 8, 2, 8, 8, 2, 2, 8, 2, 8, 3, 2, 8, 8, 2, 8, 8, 2, 8, 2, 2, 2, 8, 8, 2, 2, 8, 2, 3, 8, 2, 8, 2, 2, 8, 8, 8, 8
Offset: 1
Programs
-
Maple
isFib := proc(n) local i ; for i from 1 do if combinat[fibonacci](i) > n then RETURN(false) ; elif combinat[fibonacci](i) = n then RETURN(true) ; fi ; od: end: A123193 := proc(n) option remember ; local nmin,k ; nmin := 1 : if n > 1 then nmin := A123193(n-1)+1 ; fi ; for k from nmin do if isFib( numtheory[tau](k) ) then RETURN(k) ; fi ; od: end: A130451 := proc(n) numtheory[tau](A123193(n)) ; end: seq(A130451(n),n=1..80) ; # R. J. Mathar, Nov 16 2007
-
Mathematica
FibQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]]; Select[DivisorSigma[0, Range[250]], FibQ] (* Jean-François Alcover, Jan 27 2024 *)
Formula
Extensions
Corrected and extended by R. J. Mathar, Nov 16 2007