cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130451 Number of divisors of A123193(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 8, 3, 2, 8, 2, 2, 8, 2, 8, 2, 2, 3, 2, 8, 8, 2, 2, 8, 2, 8, 2, 2, 8, 2, 5, 2, 8, 2, 2, 2, 8, 2, 8, 8, 2, 2, 8, 2, 8, 3, 2, 8, 8, 2, 8, 8, 2, 8, 2, 2, 2, 8, 8, 2, 2, 8, 2, 3, 8, 2, 8, 2, 2, 8, 8, 8, 8
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 08 2007

Keywords

Programs

  • Maple
    isFib := proc(n) local i ; for i from 1 do if combinat[fibonacci](i) > n then RETURN(false) ; elif combinat[fibonacci](i) = n then RETURN(true) ; fi ; od: end: A123193 := proc(n) option remember ; local nmin,k ; nmin := 1 : if n > 1 then nmin := A123193(n-1)+1 ; fi ; for k from nmin do if isFib( numtheory[tau](k) ) then RETURN(k) ; fi ; od: end: A130451 := proc(n) numtheory[tau](A123193(n)) ; end: seq(A130451(n),n=1..80) ; # R. J. Mathar, Nov 16 2007
  • Mathematica
    FibQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]];
    Select[DivisorSigma[0, Range[250]], FibQ] (* Jean-François Alcover, Jan 27 2024 *)

Formula

a(n)=A000005(A123193(n)). - R. J. Mathar, Nov 16 2007

Extensions

Corrected and extended by R. J. Mathar, Nov 16 2007