cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A130467 Primes p of the form p=a^2+b^3, such that q =A130468(n)= a^3+b^2 is prime and greater than p; p < q ; b < a.

Original entry on oeis.org

17, 43, 89, 113, 127, 223, 233, 269, 337, 443, 449, 487, 811, 919, 1129, 1213, 1361, 1471, 2089, 2089, 2521, 2647, 2731, 2953, 2969, 3041, 3259, 3391, 3433, 4093, 4441, 4651, 4721, 4721, 4969, 5237, 5309, 5527, 5689, 6121, 6329, 6361, 6427, 7057, 7121
Offset: 1

Views

Author

Tomas Xordan, May 27 2007

Keywords

Examples

			a(1)=17 because 17=3^2+2^3=9+8 and A130468(1)= 31=3^3+2^2=27+4; 17<31 ; 2 < 3;
a(5)=127 because 127=10 ^2 + 3 ^3= 100+27 and A130468(5)= 1009 = 10 ^3 + 3 ^2 = 1000+9; 127< 1009; 3 < 10
		

Crossrefs

Programs

  • Mathematica
    pgpQ[{b_,a_}]:=Module[{p1=a^2+b^3,p2=b^2+a^3},AllTrue[{p1,p2},PrimeQ] && p1Harvey P. Dale, Jul 30 2018 *)

Formula

p=a^2+b^3;q=a^3+b^2
Showing 1-1 of 1 results.