cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130515 In triangular peg solitaire, number of distinct feasible pairs starting with one peg missing and finishing with one peg.

Original entry on oeis.org

1, 4, 3, 17, 29, 27, 80, 125, 108, 260, 356, 300, 637, 832, 675, 1341, 1665, 1323, 2500, 3025, 2352, 4304, 5072, 3888, 6929, 8036, 6075, 10625, 12125, 9075, 15616, 17629, 13068, 22212, 24804, 18252, 30685, 34000, 24843, 41405, 45521
Offset: 2

Views

Author

N. J. A. Sloane, Aug 09 2007

Keywords

Comments

Coincides with A130516 for n >= 6.

Crossrefs

Cf. A130516.

Programs

  • Maple
    A130515 := proc(n)
        t := n*(n+1)/2 ;
        if modp(n,3) = 1 then
            (t-1)^2/27 ;
        elif type(n,'even') then
            (4*t^2+9*n^2)/72 ;
        else
            (4*t^2+9*(n+1)^2)/72 ;
        fi;
    end proc: # R. J. Mathar, Sep 07 2015
  • Mathematica
    a[n_] := With[{t = n*(n + 1)/2}, Which[Mod[n, 3] == 1, (t - 1)^2/27, EvenQ[n], (4*t^2 + 9*n^2)/72, True, (4*t^2 + 9*(n + 1)^2)/72]];
    Table[a[n], {n, 2, 42}] (* Jean-François Alcover, Nov 26 2017 *)
  • PARI
    a(n) = {my(T = n*(n+1)/2); if (n % 3 == 1, (T-1)^2/27, if ( n % 2 == 0, (4*T^2 + 9*n^2)/72, (4*T^2 + 9*(n+1)^2)/72;););}  \\ Michel Marcus, Apr 21 2013

Formula

Reference gives an explicit formula for a(n).
G.f.: -x^2*(x^2+1) *(x^14 +4*x^13 +2*x^12 +10*x^11 +15*x^10 +8*x^9 +15*x^8 +34*x^7 +15*x^6 +8*x^5 +15*x^4 +10*x^3 +2*x^2 +4*x +1) / ( (1+x)^2 *(x^2-x+1)^2 *(x-1)^5 *(1+x+x^2)^5 ). - R. J. Mathar, Sep 07 2015
a(n) = 3*a(n-3) -a(n-6) -5*a(n-9) +5*a(n-12) +a(n-15) -3*a(n-18) +a(n-21). - R. J. Mathar, Sep 07 2015