cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130524 Diagonal immediately below the main diagonal of square array A130523.

Original entry on oeis.org

1, 4, 18, 87, 442, 2332, 12677, 70605, 401172, 2317683, 13578615, 80502845, 482140580, 2912954129, 17733375207, 108676158775, 669914021414, 4151053001800, 25841001981211, 161534820531068, 1013566626969398, 6381398103680604, 40301852983776764, 255249505209864803, 1620819715569894894
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2007

Keywords

Crossrefs

Cf. A130523; diagonals: A007857, A130525; related: A000108, A001764.

Programs

  • PARI
    {a(n) = my(C,F,D); C=Ser(vector(n+1,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(n+1,r,binomial(3*r-3,r-1)/(2*r-1))); D=1/(1-x*C*F-x*F^2); polcoef(C*D*F+x*O(x^n),n,x)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f.: A(x) = C(x)*D(x)*F(x), where D(x) = 1/(1 - x*C(x)*F(x) - x*F(x)^2) is the g.f. of the main diagonal (A007857), C(x) = 1 + x*C(x)^2 is the g.f. of Catalan numbers (A000108) and F(x) = 1 + x*F(x)^3 is the g.f. of ternary numbers (A001764).

Extensions

Edited and corrected by Paul D. Hanna, Jan 27 2025