A283207 a(n) = a(floor(n/a(n-1))) + a(floor(n/a(n-2))) with a(1) = a(2) = 2.
2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 6, 4, 6, 6, 4, 8, 6, 6, 8, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1
Keywords
Examples
a(5) = 4 because a(5) = a(floor(5/a(4))) + a(floor(5/a(3))) = a(floor(5/4)) + a(floor(5/4)) = a(1) + a(1) = 4.
Links
- Altug Alkan, Table of n, a(n) for n = 1..10000
- Altug Alkan, Alternative Graph of A283207
- Altug Alkan, Line plot of (a(floor(n/a(n-1))), a(floor(n/a(n-2)))) for n <= 2^15
- Rémy Sigrist, Scatterplot of the first 2^34 terms
- Rémy Sigrist, Line plot of (a(floor(n/a(n-1))), a(floor(n/a(n-2)))) for n <= 12855108032
Programs
-
Maple
A:= Vector(100): A[1]:= 2: A[2]:= 2: for n from 3 to 100 do A[n]:= A[floor(n/A[n-1])] + A[floor(n/A[n-2])] od: convert(A,list); # Robert Israel, Jun 23 2020
-
Mathematica
a[1] = a[2] = 2; a[n_] := a[n] = a[Floor[n/a[n - 1]]] + a[Floor[n/a[n - 2]]]; Array[a, 120] (* Michael De Vlieger, Mar 06 2017 *)
-
PARI
a=vector(100); a[1]=a[2]=2; for(n=3, #a, a[n]=a[n\a[n-1]]+a[n\a[n-2]]); a
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A283207(n): return 2 if n <= 2 else A283207(n//A283207(n-1)) + A283207(n//A283207(n-2)) # Chai Wah Wu, Jun 23 2020
Comments