A130553 Numerators of partial sums for a series for 2*Pi*sqrt(3)/9.
1, 7, 6, 169, 1523, 133, 72623, 87149, 823077, 15638477, 46915441, 13834041, 224803169, 6936783521, 5587964507, 4157445593923, 12472336782289, 170187831339, 71785227258967, 153825486983593, 4905323862699739
Offset: 1
Examples
Rationals r(n): 1, 7/6, 6/5, 169/140, 1523/1260, 133/110, 72623/60060, ....
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.
Links
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45. 2*Eq. 10, p. 38. [_Wolfdieter Lang_, Oct 17 2008]
- W. Lang, Rationals and limit.
- Renzo Sprugnoli, Sums of reciprocals of the central binomial coefficients, Integers: electronic journal of combinatorial number theory, 6 (2006) #A27, 1-18. [_Wolfdieter Lang_, Oct 17 2008]
Programs
-
PARI
a(n) = numerator(2*sum(j=1, n, 1/(j*binomial(2*j,j)))); \\ Michel Marcus, Nov 08 2015
Formula
a(n) = numerator(r(n)), n >= 1, with the rationals r(n) defined above and taken in lowest terms.
Comments