A309594 Smallest members of prime triples, the sum of which results in a perfect square.
13, 37, 277, 613, 12157, 14557, 23053, 55213, 81013, 203317, 331333, 393853, 824773, 867253, 1008037, 2038573, 3026053, 3322213, 5198197, 5497237, 5793517, 5984053, 9107173, 17246413, 20850757, 20871853, 21327997, 25363573, 25678573, 27258613, 29134597, 30153037, 33313333
Offset: 1
Keywords
Examples
Let p = 277 (prime), q = p+4 = 281 (prime), r = p+6 = 283 (prime). We now have a prime triple. p+q+r = 841 = 29^2, a perfect square.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Res:= NULL: count:= 0: for k from 0 while count < 100 do for x in [6*k+1,6*k+5] do p:= (x^2-10)/3; if isprime(p) and isprime(p+4) and isprime(p+6) then count:= count+1; Res:= Res, p fi od od: Res; # Robert Israel, Aug 13 2019
-
Mathematica
ok[p_] := If[AllTrue[{p, p+4, p+6}, PrimeQ], Sow@p]; Reap[Do[ok[3 y^2 + 2 y - 3]; ok[3 y^2 + 4 y - 2], {y, 4000}]][[2, 1]] (* Giovanni Resta, Aug 09 2019 *)
-
PARI
issq(p) = issquare(3*p+10); istriple(p) = isprime(p+4) && isprime(p+6); isok(p) = isprime(p) && istriple(p) && issq(p); \\ Michel Marcus, Aug 10 2019
Extensions
More terms from Michel Marcus, Aug 09 2019
Comments