A130664 a(1)=1. a(n) = a(n-1) + (number of terms from among a(1) through a(n-1) which are factorials).
1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250
Offset: 1
Examples
When interpreted as an irregular table, the rows begin as: 1; 2, 4; 6, 9, 12, 15, 18, 21;
Links
- Antti Karttunen, Rows 1..7 of irregular table, flattened.
Programs
-
Maple
A[1]:= 1: nextf:= 2!: m:= 1: for n from 2 to 100 do A[n]:= A[n-1]+m; if A[n] = nextf then m:= m+1; nextf:= (m+1)!; fi; od: seq(A[i],i=1..100); # Robert Israel, Apr 28 2016
-
Mathematica
Table[Range[n!, (n + 1)! - 1, n], {n, 5}] // Flatten (* Michael De Vlieger, Aug 29 2017 *)
-
Scheme
(define (A130664 n) (+ 1 (A084555(- n 1))))
Formula
a(n) = A084555(n-1) + 1.
Comments