cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130679 a(n) = (n+1+(-1)^n)*A024167(n), related to alternating harmonic sums.

Original entry on oeis.org

1, 4, 15, 84, 470, 3552, 26796, 255840, 2435184, 28114560, 323405280, 4380445440, 59105255040, 918796677120, 14228252640000, 249644312064000, 4363865549568000, 85297521899520000, 1661265370695168000
Offset: 1

Views

Author

Paul Curtz, Jun 29 2007

Keywords

Comments

Inspired by a formula in the reference, the study of the singular points of planar differential systems leads to 3 two-dimensional polynomial families, one ordinary (degenerate case, considered in one dimension, see A129326) and two odd (the second, considered in one dimension, see A129587).
The first is in one dimension P(2n-1,x)=(n+1+x^n)*sum_{i=0..n-1} x^i/(i+1), n>=1.
The table of coefficients of P() with 2n coefficients per row starts:
2, 1;
3, 3/2, 1, 1/2;
4, 2, 4/3, 1, 1/2, 1/3;.. .
Rows multiplied by n!, the table becomes Q():
2, 1;
6, 3, 2, 1;
24, 12, 8, 6, 3, 2;
120, 60, 40, 30, 24, 12, 8, 6;
720, 360, 240, 180, 144,...
The sequence gives the alternating row sums of this table Q, positive sign for coefficients in front of even and negative sign for coefficients in front of odd powers of x.
The row sums of Q are (n+2)*A000254(n)= 3, 12, 55, 300...
Adding the alternating and ordinary row sums yields the sequence 4, 16, 70, 384....
The sequence of sums of antidiagonals in the Q table starts 2, 6+1=7, 24+3=27, 120+12+1=134.

Examples

			a(1) = 2-1.
a(2) = 6-3+2-1.
a(3) = 24-12+8-6+3-2.
		

Programs

  • Mathematica
    a[n_] := (1/2)*(n + (-1)^n + 1)*n!*((-1)^n*(HarmonicNumber[(n-1)/2] - HarmonicNumber[n/2]) + Log[4]); Table[a[n] // FullSimplify, {n, 1, 19}] (* Jean-François Alcover, Oct 03 2012 *)

Formula

a(n) = n!*(n+1+(-1)^n)*A058313(n)/A058312(n). - R. J. Mathar, Jul 28 2008

Extensions

Edited and extended by R. J. Mathar, Jul 28 2008