cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130708 Number of compositions of n such that every part divides the largest part.

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 26, 45, 79, 137, 241, 423, 754, 1343, 2410, 4344, 7870, 14305, 26103, 47763, 87649, 161229, 297251, 549108, 1016243, 1883898, 3497761, 6503420, 12107958, 22570221, 42121298, 78692765, 147165225, 275476533, 516115940
Offset: 0

Views

Author

Vladeta Jovovic, Jul 01 2007

Keywords

Crossrefs

Programs

  • Maple
    A130708 := proc(n) local gf,den1,den2,i,d ; gf := 1 ; for i from 1 to n do den1 := 1 ; den2 := 1 ; for d in numtheory[divisors](i) do den1 := den1-x^d ; if d < i then den2 := den2-x^d ; fi ; od ; gf := taylor(gf+x^i/den1/den2,x=0,n+1) ; od: coeftayl(gf,x=0,n) ; end: seq(A130708(n),n=0..40) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    m = 35;
    1 + Sum[x^n/((1 - Sum[x^d, {d, Divisors[n]}]) (1 - Sum[Boole[d < n] x^d, {d, Divisors[n]}])), {n, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, May 22 2020 *)

Formula

G.f.: 1 + Sum_{n>0} x^n/((1-Sum_{d divides n} x^d)*(1-Sum_{d divides n,d

Extensions

More terms from R. J. Mathar, Oct 28 2007