A130711 Number of compositions of n such that the smallest part divides every part.
1, 2, 4, 8, 14, 32, 57, 123, 239, 493, 970, 1997, 3953, 8017, 16024, 32281, 64550, 129742, 259561, 520606, 1041871, 2087177, 4176594, 8362063, 16730862, 33483361, 66987710, 134029333, 268117646, 536373213, 1072909785, 2146169660
Offset: 1
Examples
a(5)=14 because among the 16 compositions of 5 only 2+3 and 3+2 do not qualify; the others, except for the composition 5, have at least one component equal to 1.
Crossrefs
Cf. A083710.
Programs
-
Maple
G:=sum(x^n*(1-x^n)^2/((1-2*x^n)*(1-x^n-x^(2*n))), n=1..50); Gser:=series(G, x =0,40): seq(coeff(Gser,x,n),n=1..33); # Emeric Deutsch, Sep 08 2007
Formula
Inverse Moebius transform of A099036.
G.f.: Sum_{n>0} x^n*(1-x^n)^2/((1-2*x^n)*(1-x^n-x^(2*n))).
Extensions
More terms from Emeric Deutsch, Sep 08 2007