A130714 Number of partitions of n such that every part divides the largest part and such that the smallest part divides every part.
1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 41, 42, 55, 64, 81, 83, 114, 116, 151, 168, 202, 210, 277, 289, 348, 382, 460, 478, 604, 623, 747, 812, 942, 1006, 1223, 1269, 1479, 1605, 1870, 1959, 2329, 2434, 2818, 3056, 3458, 3653, 4280, 4493, 5130, 5507, 6231, 6580
Offset: 1
Examples
From _Gus Wiseman_, Apr 18 2021: (Start) The a(1) = 1 though a(8) = 16 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (41) (33) (61) (44) (111) (31) (221) (42) (331) (62) (211) (311) (51) (421) (71) (1111) (2111) (222) (511) (422) (11111) (411) (2221) (611) (2211) (4111) (2222) (3111) (22111) (3311) (21111) (31111) (4211) (111111) (211111) (5111) (1111111) (22211) (41111) (221111) (311111) (2111111) (11111111) (End)
Crossrefs
The second condition alone gives A083710.
The first condition alone gives A130689.
The opposite version is A343342.
The Heinz numbers of these partitions are the complement of A343343.
The complement is counted by A343346.
The strict case is A343378.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Programs
-
Maple
A130714 := proc(n) local gf,den,i,k,j ; gf := 0 ; for i from 0 to n do for j from 1 to n/(1+i) do den := 1 ; for k in numtheory[divisors](i) do den := den*(1-x^(j*k)) ; od ; gf := taylor(gf+x^(j+i*j)/den,x=0,n+1) ; od ; od: coeftayl(gf,x=0,n) ; end: seq(A130714(n),n=1..60) ; # R. J. Mathar, Oct 28 2007
-
Mathematica
Table[If[n==0,1,Length[Select[IntegerPartitions[n],And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
Formula
G.f.: Sum_{i>=0} Sum_{j>0} x^(j+i*j)/Product_{k|i} (1-x^(j*k)).
Extensions
More terms from R. J. Mathar, Oct 28 2007
Comments