cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130820 Decimal expansion of number whose Engel expansion is given by the sequence: 1,1,2,2,3,3,4,4,...ceiling(n/2),...

Original entry on oeis.org

2, 8, 7, 0, 2, 2, 2, 1, 5, 6, 9, 7, 3, 3, 9, 6, 3, 3, 0, 8, 1, 9, 4, 5, 8, 8, 6, 5, 8, 1, 1, 1, 9, 9, 6, 0, 1, 2, 4, 0, 3, 1, 9, 2, 6, 2, 2, 8, 0, 9, 9, 5, 7, 0, 1, 2, 0, 3, 1, 2, 7, 7, 3, 6, 2, 7, 2, 8, 5, 0, 3, 8, 0, 7, 6, 8, 0, 3, 7, 5, 2, 7, 8, 4, 5, 6, 3, 9, 2, 3, 6, 1, 5, 0, 7, 1, 4, 8, 2, 4
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			2.8702221569733963308194588658111996012403192622809957012...
		

References

  • Engel, F. "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

  • Maple
    evalf(BesselI(0, 2) + BesselI(1, 2) - 1, 100); # Peter Bala, Jul 02 2016
  • Mathematica
    First@ RealDigits@ N[Sum[1/Product[Ceiling[r/2], {r, n}], {n, 1000}], 100] (* Original program amended to generate output by Michael De Vlieger, Jul 03 2016 *)
    RealDigits[3 - HypergeometricPFQ[{1, 1}, {3, 3, 3}, 1]/8, 10, 100][[1]] (* Vaclav Kotesovec, Jul 03 2016 *)

Formula

From Peter Bala, Jul 01 2016: (Start)
Constant c = 1/1 + 1/(1*1) + 1/(1*1*2) + 1/(1*1*2*2) + 1/(1*1*2*2*3) + 1/(1*1*2*2*3*3) + ... = Sum_{n >= 1} binomial(n,floor(n/2))/n!.
Alternative series representations:
c = 3 - Sum_{n >= 2} 1/(n*(n - 1)*n!^2);
c = 1 + Sum_{n >= 1} (n + 2)/(n!*(n + 1)!);
c = 5/3 + 1/3*Sum_{n >= 2} (n + 1)*(n + 2)/n!^2;
c = A070910 + A096789 - 1.
Continued fraction: c = 3 - 1/(8 - 4/(14 - 9/(32 - ... - (n-1)^2/(n^2 + n + 2 - ...)))). See comments in A141827. (End)