A130833 Sums of two or more distinct 4th powers of primes.
97, 641, 706, 722, 2417, 2482, 2498, 3026, 3042, 3107, 3123, 14657, 14722, 14738, 15266, 15282, 15347, 15363, 17042, 17058, 17123, 17139, 17667, 17683, 17748, 17764, 28577, 28642, 28658, 29186, 29202, 29267, 29283, 30962, 30978, 31043, 31059, 31587, 31603
Offset: 1
Examples
a(1) = 97 = 2^4 + 3^4. a(2) = 641 = 2^4 + 5^4. a(3) = 706 = 3^4 + 5^4. a(4) = 722 = 2^4 + 3^4 + 5^4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 40000: # for all terms <= N S1:= {}: S2:= {}: p:= 1: do p:= nextprime(p); if p^4 > N then break fi; s:= p^4; S2:= S2 union select(`<=`,map(`+`,S1 union S2, s), N); S1:= S1 union {s}; od: sort(convert(S2,list)); # Robert Israel, Apr 27 2020
-
Mathematica
nn=6; t = Sort@ Flatten@ Table[ n^4, {n, Prime@ Range@ nn}]; Select[Sort[ Plus @@@ Subsets[t, {2, nn}]], # < Prime[nn-1]^4 + Prime[nn]^4 &] (* Robert G. Wilson v, Jul 22 2011 *)
Comments