cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130846 Replace n with the concatenation of its anti-divisors.

Original entry on oeis.org

2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813, 2614, 345915, 235915, 716, 2371017, 3417, 2561118, 3581119, 2319, 41220, 237921, 35791321, 2561322, 3423, 23101423, 824, 2351525, 3457111525, 2671126, 391627
Offset: 3

Views

Author

Jonathan Vos Post, Jul 20 2007, Jul 22 2007

Keywords

Comments

Number of anti-divisors concatenated to form a(n) is A066272(n). We may consider prime values of the concatenated anti-divisor sequence and we may iterate it, i.e. n, a(n), a(a(n)), a(a(a(n))) which leads to questions of trajectory, cycles, fixed points.
See A066272 for definition of anti-divisor.
Primes in this sequence are at n=3,4,5,10,14,16,40,46,100,145,149,... - R. J. Mathar, Jul 24 2007

Examples

			3: 2, so a(3) = 2.
4: 3, so a(4) = 3.
5: 2, 3, so a(5) = 23.
6: 4, so a(6) = 4.
7: 2, 3, 5, so a(7) = 235.
17: 2, 3, 5, 7, 11, so a(17) = 235711
		

Crossrefs

Programs

  • Maple
    antiDivs := proc(n) local resul,odd2n,r ; resul := {} ; for r in ( numtheory[divisors](2*n-1) union numtheory[divisors](2*n+1) ) do if n mod r <> 0 and r> 1 and r < n then resul := resul union {r} ; fi ; od ; odd2n := numtheory[divisors](2*n) ; for r in odd2n do if ( r mod 2 = 1) and r > 2 then resul := resul union {2*n/r} ; fi ; od ; RETURN(resul) ; end: A130846 := proc(n) cat(op(antiDivs(n))) ; end: seq(A130846(n),n=3..80) ; # R. J. Mathar, Jul 24 2007
  • Python
    from sympy.ntheory.factor_ import antidivisors
    def A130846(n): return int(''.join(str(s) for s in antidivisors(n))) # Chai Wah Wu, Dec 08 2021

Extensions

More terms from R. J. Mathar, Jul 24 2007