A131020 For all cyclic quadrilaterals with four consecutive primes as sides that have an area that is prime after rounding, the sequence gives the first of these four consecutive primes.
3, 5, 13, 17, 61, 67, 97, 139, 157, 163, 173, 223, 271, 349, 353, 419, 479, 503, 541, 691, 701, 743, 877, 941, 1013, 1049, 1051, 1097, 1123, 1229, 1231, 1249, 1297, 1301, 1423, 1453, 1493, 1531, 1559, 1607, 1621, 1697, 1811, 1901, 1999, 2017, 2027, 2053, 2087
Offset: 1
Examples
a(5) = 61 because (61 + 67 + 71 + 73)/2 = 136 and sqrt((136 - 61)*(136 - 67)*(136 - 71)*(136 - 73)) = 4603.43622 and round(4603.43622) = 4603 is prime.
References
- Coxeter, H. S. M. and Greitzer, S. L. "Cyclic Quadrangles; Brahmagupta's Formula", Sect. 3.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967.
Links
- J. L. Coolidge, A Historically Interesting Formula for the Area of a Quadrilateral, Amer. Math. Monthly 46, 345-347, 1939.
- Eric Weisstein's World of Mathematics, Brahmagupta's Formula.
Programs
-
Maple
Digits := 80 : isA131020 := proc(p) local p2,p3,p4,s,area; if isprime(p) then p2 := nextprime(p) ; p3 := nextprime(p2) ; p4 := nextprime(p3) ; s := (p+p2+p3+p4)/2 ; area := round(sqrt((s-p)*(s-p2)*(s-p3)*(s-p4))) ; RETURN(isprime(area)) ; else false ; fi ; end: for n from 1 to 380 do if isA131020(ithprime(n)) then printf("%d,",ithprime(n)) ; fi ; od;
Formula
a(n) = prime(k) for some k such that, where S = semiperimeter = (prime(k) + prime(k+1) + prime(k+2) + prime(k+3))/2 is an element of A131019 and rounded area = round(sqrt((S-prime(k))*(S-prime(k+1))*(S-prime(k+2))*(S-prime(k+3)))) is prime.
Extensions
Edited by R. J. Mathar, Jun 12 2007
Comments