cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131084 A129686 * A007318. Riordan triangle (1+x, x/(1-x)).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 2, 3, 1, 0, 2, 5, 4, 1, 0, 2, 7, 9, 5, 1, 0, 2, 9, 16, 14, 6, 1, 0, 2, 11, 25, 30, 20, 7, 1, 0, 2, 13, 36, 55, 50, 27, 8, 1, 0, 2, 15, 49, 91, 105, 77, 35, 9, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 14 2007

Keywords

Comments

Row sums = A098011 starting (1, 2, 3, 6, 12, 24, 48, ...). A131085 = A007318 * A129686
Riordan array (1+x, x/(1-x)). - Philippe Deléham, Mar 02 2012

Examples

			The triangle T(n, k) begins:
n\k 0  1  2  3   4   5   6   7  8  9 10 ...
0:  1
1:  1  1
2:  0  2  1
3:  0  2  3  1
4:  0  2  5  4   1
5:  0  2  7  9   5   1
6:  0  2  9 16  14   6   1
7:  0  2 11 25  30  20   7   1
8:  0  2 13 36  55  50  27   8  1
9:  0  2 15 49  91 105  77  35  9  1
10: 0  2 17 64 140 196 182 112 44 10  1
... Reformatted. - _Wolfdieter Lang_, Jan 06 2015
		

Crossrefs

Formula

A129686(signed): (1,1,1,...) in the main diagonal and (-1,-1,-1, ...) in the subsubdiagonal); * A007318, Pascal's triangle; as infinite lower triangular matrices.
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2*x + 3*x^2/2! + x^3/3!) = 2*x + 7*x^2/2! + 16*x^3/3! + 30*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
G.f. column k: (1+x)*(x/(1-x))^k, k >= 0. (Riordan property). - Wolfdieter Lang, Jan 06 2015
T(n, 0) = 1 if n=0 or n=1 else 0; T(n, k) = binomial(n-1,k-1) + binomial(n-2,k-1)*[n-1 >= k] if n >= k >= 1, where [S] = 1 if S is true, else 0, and T(n, k) = 0 if n < k. - Wolfdieter Lang, Jan 08 2015

Extensions

Edited: Added Riordan property (see Philippe Deléham comment) in name. - Wolfdieter Lang, Jan 06 2015