A131097 Sum of digits of 3-smooth numbers in ternary representation.
1, 2, 1, 2, 2, 4, 1, 2, 4, 2, 4, 1, 4, 2, 4, 2, 4, 4, 1, 4, 2, 6, 4, 2, 4, 4, 1, 4, 4, 2, 6, 4, 2, 8, 4, 4, 1, 4, 4, 2, 8, 6, 4, 2, 8, 4, 4, 10, 1, 4, 4, 2, 8, 6, 4, 10, 2, 8, 4, 4, 10, 1, 4, 4, 8, 2, 8, 6, 4, 10, 2, 8, 4, 10, 4, 10, 1, 4, 4, 8, 2, 8, 6, 16, 4, 10, 2, 8, 4, 10, 4
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit Sum
- Eric Weisstein's World of Mathematics, Ternary
Programs
-
Maple
Res:= NULL: N:= 10^6: for a from 0 to ilog2(N) do for b from 0 do v:= 2^a*3^b; if v > N then break fi; Res:= Res, v; od od: TS:= sort([Res]): map(t -> convert(convert(t,base,3),`+`), TS); # Robert Israel, Oct 08 2018
-
Python
from sympy import integer_log from sympy.ntheory import digits def A131097(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return sum(digits(bisection(f,n,n),3)[1:]) # Chai Wah Wu, Jan 31 2025
Comments