A131114 T(n,k) = 6*binomial(n,k) - 5*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
1, 6, 1, 6, 12, 1, 6, 18, 18, 1, 6, 24, 36, 24, 1, 6, 30, 60, 60, 30, 1, 6, 36, 90, 120, 90, 36, 1, 6, 42, 126, 210, 210, 126, 42, 1, 6, 48, 168, 336, 420, 336, 168, 48, 1, 6, 54, 216, 504, 756, 756, 504, 216, 54, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 6, 1; 6, 12, 1; 6, 18, 18, 1; 6, 24, 36, 24, 1; 6, 30, 60, 60, 30, 1; 6, 36, 90, 120, 90, 36, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return 6*Binomial(n,k); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
Magma
[k eq n select 1 else 6*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
Maple
seq(seq(`if`(k=n, 1, 6*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Mathematica
Table[If[k==n, 1, 6*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==n, 1, 6*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
Sage
def T(n, k): if (k==n): return 1 else: return 6*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
Comments