cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131127 Table read by rows: 2*A007318(n,m) - A167374(n,m).

Original entry on oeis.org

1, 3, 1, 2, 5, 1, 2, 6, 7, 1, 2, 8, 12, 9, 1, 2, 10, 20, 20, 11, 1, 2, 12, 30, 40, 30, 13, 1, 2, 14, 42, 70, 70, 42, 15, 1, 2, 16, 56, 112, 140, 112, 56, 17, 1, 2, 18, 72, 168, 252, 252, 168, 72, 19, 1, 2, 20, 90, 240, 420, 504, 420, 240, 90, 21, 1, 2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 23, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

Row sums = A000079(n+1), n>0.
Warning: row sums are not A046055! - N. J. A. Sloane, Jul 08 2009
Row sums = A151821(n+1), n>=0. - Alois P. Heinz, Jul 13 2009
A167374 is a modified version of the pair operator A097806 with (1,1,1,...) in the main diagonal and (-1,-1,-1,...) in the subdiagonal.

Examples

			First few rows of the triangle:
  1;
  3,  1;
  2,  5,  1;
  2,  6,  7,  1;
  2,  8, 12,  9,  1;
  2, 10, 20, 20, 11,  1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= (n, m)-> 2*binomial(n, m) -(-1)^(n+m)*`if`(n=m or n=m+1, 1, 0): seq(seq(T(n,m), m=0..n), n=0..12); # Alois P. Heinz, Jul 13 2009
  • Mathematica
    T[n_, m_] := 2*Binomial[n, m] - (-1)^(n+m)*If[n == m || n == m+1, 1, 0];
    Table[Table[T[n, m], {m, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 19 2016, translated from Maple *)

Extensions

Edited by N. J. A. Sloane and R. J. Mathar, Jul 09 2009
Corrected and extended by Alois P. Heinz, Jul 13 2009
Definition simplified by Georg Fischer, Jun 07 2023