A131127 Table read by rows: 2*A007318(n,m) - A167374(n,m).
1, 3, 1, 2, 5, 1, 2, 6, 7, 1, 2, 8, 12, 9, 1, 2, 10, 20, 20, 11, 1, 2, 12, 30, 40, 30, 13, 1, 2, 14, 42, 70, 70, 42, 15, 1, 2, 16, 56, 112, 140, 112, 56, 17, 1, 2, 18, 72, 168, 252, 252, 168, 72, 19, 1, 2, 20, 90, 240, 420, 504, 420, 240, 90, 21, 1, 2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 23, 1
Offset: 0
Examples
First few rows of the triangle: 1; 3, 1; 2, 5, 1; 2, 6, 7, 1; 2, 8, 12, 9, 1; 2, 10, 20, 20, 11, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
T:= (n, m)-> 2*binomial(n, m) -(-1)^(n+m)*`if`(n=m or n=m+1, 1, 0): seq(seq(T(n,m), m=0..n), n=0..12); # Alois P. Heinz, Jul 13 2009
-
Mathematica
T[n_, m_] := 2*Binomial[n, m] - (-1)^(n+m)*If[n == m || n == m+1, 1, 0]; Table[Table[T[n, m], {m, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 19 2016, translated from Maple *)
Extensions
Edited by N. J. A. Sloane and R. J. Mathar, Jul 09 2009
Corrected and extended by Alois P. Heinz, Jul 13 2009
Definition simplified by Georg Fischer, Jun 07 2023
Comments