A131175 Table, read by rows, of coefficients of characteristic polynomials of almost prime matrices.
1, -2, 1, -8, 1, -26, -4, 1, -66, -36, 1, -174, -196, 1, -398, -676, 1, -878, -3044, 1, -2174, -6852, -192, 1, -4862, -18628, -704, 1, -10494, -45508, -1216, 1, -22014, -141252, -6336, 1, -47614, -315332, -10432, 1, -100862, -858052, -55488, 1, -225278, -1878980, -245952
Offset: 1
Examples
A_1 = [2], with determinant = 2 and characteristic polynomial = x-2, with coefficients (1, -2) so a(a) = 1 and a(2) = -2. A_2 = [2.3] [4.6] with determinant = 0, polynomial x^2 - 8x, so the coefficients are (1, -8), hence a(3) = 1 and a(4) = -8. A_3 = [2..3..5] [4..6..9] [8.12.18] with determinant = 0, polynomial = x^3 - 26x^2, -4x, so coefficients are (1, -26, -4), hence a(5) = 1, a(6) = -26, a(7) = -4.
Programs
-
Maple
A078840 := proc(n,m) local p,k ; k := 1 ; p := 2^n ; while k < m do p := p+1 ; while numtheory[bigomega](p) <> n do p := p+1 ; od; k := k+1 ; od: RETURN(p) ; end: A131175 := proc(nrow,showall) local A,row,col,pol,T,a ; A := linalg[matrix](nrow,nrow) ; for row from 1 to nrow do for col from 1 to nrow do if row = col then A[row,col] := x-A078840(row,col) ; else A[row,col] := -A078840(row,col) ; fi ; od: od: pol := linalg[det](A) ; T := [] ; for col from nrow to 0 by -1 do a := coeftayl(pol,x=0,col) ; if a <> 0 or showall then T := [op(T),a] ; fi ; od; RETURN(T) ; end: for n from 1 to 15 do print(op(A131175(n,false))) ; od: # R. J. Mathar, Oct 26 2007
Formula
Extensions
Corrected and extended by R. J. Mathar, Oct 26 2007
Comments