cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131235 Triangle read by rows: T(n,k) is number of (n-k) X k matrices, k=0..n, with nonnegative integer entries and every row and column sum <= 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 26, 10, 1, 1, 15, 79, 79, 15, 1, 1, 21, 189, 451, 189, 21, 1, 1, 28, 386, 1837, 1837, 386, 28, 1, 1, 36, 706, 5776, 12951, 5776, 706, 36, 1, 1, 45, 1191, 15085, 66021, 66021, 15085, 1191, 45, 1, 1, 55, 1889, 34399, 258355, 551681, 258355, 34399, 1889, 55, 1
Offset: 0

Views

Author

Vladeta Jovovic, Jun 20 2007

Keywords

Comments

Row sums give A131236.

Examples

			1;
1,1;
1,3,1;
1,6,6,1;
1,10,26,10,1;
1,15,79,79,15,1;
1,21,189,451,189,21,1;
...
or as a symmetric array
1   1    1   1   1  1 1 ...
1   3    6  10  15 21 ...
1   6   26  79 189 ..
1  10   79 451 ..
1  15  189 ..
1  21 ..
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.65(a).

Crossrefs

Cf. A049088 (diagonal), A131236, A131237, A088699 and A086885 (sums <= 1), A000217 (column 1)

Programs

  • Maple
    A131235 := proc(m,n)
       exp((x*y*(3-x*y)+(x+y)*(2-x*y))/2/(1-x*y))/sqrt(1-x*y) ;
       coeftayl(%,y=0,n)*n!;
       coeftayl(%,x=0,m)*m! ;
    end proc: # R. J. Mathar, Mar 20 2018
  • Mathematica
    T[n_, k_] := Module[{ex}, ex = Exp[(x*y*(3 - x*y) + (x + y)*(2 - x*y))/2/(1 - x*y)]/Sqrt[1 - x*y]; SeriesCoefficient[ex, {y, 0, k}]*k! // SeriesCoefficient[#, {x, 0, n}]*n!&];
    Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023, after R. J. Mathar *)

Formula

G.f. column 2: (-1-x-6*x^2+x^3+x^4)/(x-1)^5. - R. J. Mathar, Mar 20 2018
T(n,2) = (4+8*n+5*n^2+6*n^3+n^4)/4. - R. J. Mathar, Mar 20 2018
G.f. column 3: -(1+3*x+30*x^2+73*x^3+24*x^4-48*x^5+7*x^6)/(x-1)^7 . - R. J. Mathar, Mar 20 2018
T(n,3) = (8+58*n^2+3*n^3+n^4+9*n^5+n^6)/8. - R. J. Mathar, Mar 20 2018