A131238 Triangle read by rows: T(n,k) = 2*binomial(n,k) - binomial(floor((n+k)/2), k) (0 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 9, 7, 1, 1, 7, 17, 16, 9, 1, 1, 9, 24, 36, 25, 11, 1, 1, 10, 36, 60, 65, 36, 13, 1, 1, 12, 46, 102, 125, 106, 49, 15, 1, 1, 13, 62, 148, 237, 231, 161, 64, 17, 1, 1, 15, 75, 220, 385, 483, 392, 232, 81, 19, 1, 1, 16, 95, 295, 625, 868, 896, 624, 321, 100, 21, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 3, 1; 1, 4, 5, 1; 1, 6, 9, 7, 1; 1, 7, 17, 16, 9, 1; 1, 9, 24, 36, 25, 11, 1; 1, 10, 36, 60, 65, 36, 13, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 2*B(n,k) - B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
-
Magma
B:=Binomial; [2*B(n,k) - B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
-
Maple
T := proc (n, k) options operator, arrow; 2*binomial(n, k)-binomial(floor((1/2)*n+(1/2)*k), k) end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 09 2007
-
Mathematica
With[{B = Binomial}, Table[2*B[n, k] - B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
-
PARI
b=binomial; T(n,k) = 2*b(n,k) - b((n+k)\2, k); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
-
Sage
b=binomial; [[2*b(n,k) - b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
Formula
Extensions
More terms added by G. C. Greubel, Jul 12 2019
Comments