A131239 Triangle, T(n,k) = 3*A007318(n,k) - 2*A046854(n,k), read by rows.
1, 1, 1, 1, 4, 1, 1, 5, 7, 1, 1, 8, 12, 10, 1, 1, 9, 24, 22, 13, 1, 1, 12, 33, 52, 35, 16, 1, 1, 13, 51, 85, 95, 51, 19, 1, 1, 16, 64, 148, 180, 156, 70, 22, 1, 1, 17, 88, 212, 348, 336, 238, 92, 25, 1, 1, 20, 105, 320, 560, 714, 574, 344, 117, 28, 1, 1, 21, 135, 425, 920, 1274, 1330, 918, 477, 145, 31, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 4, 1; 1, 5, 7, 1; 1, 8, 12, 10, 1; 1, 9, 24, 22, 13, 1; 1, 12, 33, 52, 35, 16, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 3*B(n,k) - 2*B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
-
Magma
B:=Binomial; [3*B(n,k) - 2*B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
With[{B=Binomial}, Table[3*B[n,k] - 2*B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
-
PARI
b=binomial; T(n,k) = 3*b(n,k) - 2*b((n+k)\2, k); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
-
Sage
b=binomial; [[3*b(n,k) - 2*b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
Formula
T(n,k) = 3*binomial(n,k) - 2*binomial(floor((n+k)/2), k). - G. C. Greubel, Jul 12 2019
Extensions
More terms added by G. C. Greubel, Jul 12 2019
Comments