A131240 T(n,k) = 2*A046854(n,k) - I.
1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 4, 6, 2, 1, 2, 6, 6, 8, 2, 1, 2, 6, 12, 8, 10, 2, 1, 2, 8, 12, 20, 10, 12, 2, 1, 2, 8, 20, 20, 30, 12, 14, 2, 1, 2, 10, 20, 40, 30, 42, 14, 16, 2, 1, 2, 10, 30, 40, 70, 42, 56, 16, 18, 2, 1, 2, 12, 30, 70, 70, 112, 56, 72, 18, 20, 2, 1
Offset: 0
Examples
First few rows of the triangle: 1; 2, 1; 2, 2, 1; 2, 4, 2, 1; 2, 4, 6, 2, 1; 2, 6, 6, 8, 2, 1; 2, 6, 12, 8, 10, 2, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return 2*Binomial(Int((n+k)/2), k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k)))); # G. C. Greubel, Jul 12 2019
-
Magma
[k eq n select 1 else 2*Binomial(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
Table[If[k==n, 1, 2*Binomial[Floor[(n+k)/2], k]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 12 2019 *)
-
PARI
T(n,k) = if(k==n, 1, 2*binomial((n+k)\2, k));
-
Sage
def T(n, k): if (k==n): return 1 else: return 2*binomial(floor((n+k)/2), k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
Formula
Extensions
More terms added by G. C. Greubel, Jul 12 2019
Comments