A131270 Triangle T(n,k) = 2*A046854(n,k) - 1, read by rows.
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 5, 5, 7, 1, 1, 1, 5, 11, 7, 9, 1, 1, 1, 7, 11, 19, 9, 11, 1, 1, 1, 7, 19, 19, 29, 11, 13, 1, 1, 1, 9, 19, 39, 29, 41, 13, 15, 1, 1, 1, 9, 29, 39, 69, 41, 55, 15, 17, 1, 1, 1, 11, 29, 69, 69, 111, 55, 71, 17, 19, 1, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 1, 1; 1, 3, 1, 1; 1, 3, 5, 1, 1; 1, 5, 5, 7, 1, 1; 1, 5, 11, 7, 9, 1, 1; 1, 7, 11, 19, 9, 11, 1, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[2*Binomial(Floor((n+k)/2), k) -1: k in [0..n]]:n in [0..12]]; // G. C. Greubel, Jul 09 2019
-
Mathematica
Table[2*Binomial[Floor[(n+k)/2], k] - 1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2019 *)
-
PARI
T(n,k) = 2*binomial((n+k)\2, k)-1; \\ G. C. Greubel, Jul 09 2019
-
Sage
[[2*binomial(floor((n+k)/2), k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 09 2019
Comments