cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131295 a(n)=ds_4(a(n-1))+ds_4(a(n-2)), a(0)=0, a(1)=1; where ds_4=digital sum base 4.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Jun 27 2007

Keywords

Comments

The digital sum analog (in base 4) of the Fibonacci recurrence.
When starting from index n=3, periodic with Pisano period A001175(3)=8.
Also a(n)==A004090(n) modulo 3 (A004090(n)=digital sum of Fib(n)).
For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=5=A131319(4) for the base p=4.
a(n) and Fib(n)=A000045(n) are congruent modulo 3 which implies that (a(n) mod 3) is equal to (Fib(n) mod 3)=A082115(n-1) (for n>0). Thus (a(n) mod 3) is periodic with the Pisano period = A001175(3)=8 too. - Hieronymus Fischer

Examples

			a(8)=3, since a(6)=5=11(base 4), ds_4(5)=2,
a(7)=4=10(base 4), ds_4(4)=1 and so a(8)=2+1.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Total[IntegerDigits[a,4]]+Total[IntegerDigits[b,4]]}; NestList[ nxt,{0,1},110][[All,1]] (* Harvey P. Dale, Jul 30 2018 *)

Formula

a(n)=a(n-1)+a(n-2)-3*(floor(a(n-1)/4)+floor(a(n-2)/4)).
a(n)=floor(a(n-1)/4)+floor(a(n-2)/4)+(a(n-1)mod 4)+(a(n-2)mod 4).
a(n)=A002265(a(n-1))+A002265(a(n-2))+A010873(a(n-1))+A010873(a(n-2)).
a(n)=Fib(n)-3*sum{1A000045(n).